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The correspondence between Eigen's model of macromolecular evolution and 
the equilibrium statistical mechanics of an inhomogeneous Ising system is 
developed. The free energy landscape of random Ising systems with the Hopfield 
Hamiltonian as a special example is applied to the replication rate coefficient 
landscape. The coupling constants are scaled with 1//, since the maxima of any 
landscape must not increase with the length of the macromolecules. The 
calculated error threshold relation then agrees with Eigen's expression, which 
was derived in a different way. It gives an explicit expression for the superiority 
parameter in terms of the parameters of the landscape. The dynamics of selec- 
tion and evolution is discussed. 

KEY WORDS:  Macromolecular evolution; inhomogeneous, random Ising 
systems; replication number landscape; error threshold; quasispecies. 

1. I N T R O D U C T I O N  

Selection of species is an example from biology for a phase transition far 
from thermal equilibrium. Here we are interested in Eigen's evolution 
model, (l) which is governed by a set of nonlinear chemical rate equations. 
It was shown (2) that one can describe the dynamics of this system by the 
equilibrium thermodynamics of a 2-dim inhomogeneous spin system. This 
is analogous to the correspondence between d-dim dynamic systems (e.g., 
quantum mechanical spin systems (3) or cellular automata ~4)) and the 
equilibrium statistical mechanics of (d+ 1)-dim Ising models. Here the 
macromolecules are described by 1-dim Ising or 2-state Potts spin chains. 
The full time development is represented as a 2-dim spin configuration, 
where one boundary row is fixed according to the initial condition of the 
dynamic system. The spin system becomes homogeneous only far away 
from that boundary, which then describes the stationary state. In this work 
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the correspondence between the two fields, evolution dynamics and 
statistical mechanics, is established and applied to concrete models of the 
replication rate coefficient landscape. 

Eigen's equations give a quantitative description of the evolutionary 
behavior of macromolecules like RNA and DNA under well-defined 
experimental conditions. If the imposed selection pressure consists in a 
high rate of replications, the macroscopic equations for the normalized 
concentration variables x~(t) are (1) 

2i=A(i)x i -  ~ W(k,i)xi+ ~ W(i ,k)xk-x ,~A(k)xk  
k r  k @ i  k 

(1.1) 

The positive replication rate coefficients (rrc) A(i) are assumed to be 
independent of time. For the case of point mutations only, which keep the 
length l of the molecules fixed, the mutation rate coefficients W(k, i) are 
given by 

{ 1___~) ~ik 
W(k, i)=A(i)q' ,~,k \ 2 -  1) (1.2) 

q is an average probability of exact replication of a base, 2 is the number of 
different nucleotides that build up the macromolecules (four for RNA and 
DNA), and dik is the Hamming distance between sequence i and k. 

Equation (1.1) becomes identical to a Master equation only for an 
rrc landscape A(i) that does not vary with i. In this case the nonlinear 
flux term - x iZ~  A(k)xk cancels with the replication term A(i)xi. The 
dynamics of the 2 ~ possible realizations of macromolecules can be viewed as 
a random walk on an/ -d im hypercube, where more than nearest neighbor 
jumps are allowed, or expressed in another way, as a spin dynamics with 
multiple spin flips per unit time. However, no selection of species occurs, 
because of the degeneracy of A(i). For nontrivial rrc landscapes one can 
still linearize Eq. (1.1) by the transformation ~s) 

k 

The resulting linear differential equation system 

~i=A(i)y~- ~ W(k,i)y~+ ~ W(i,k)yk 
k ~ i  k ~ i  

(1.4) 

is not a Master equation, because the transition rate matrix W does not 
satisfy the condition Zk W(k, i )=  0 for all i, which results in unnormalized 
variables yi(t). The dynamics of (1.1) and (1.4) is characterized by the 
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behavior of the eigenvalues and eigenvectors of the replication-mutation 
matrix W, where in the long-time limit only the largest eigenvalues and 
eigenvectors become important. With the equivalence of W to a transfer 
matrix T of a two-dimensional Ports model (Ising model in the case 
)~=2), (2) one can discuss the dynamical equations by treating an 
inhomogeneous spin system in thermodynamic equilibrium with the correct 
cost function H(fl). 

In Section 2 we develop the full correspondence between the quantities 
that characterize the evolution equations and the Ising system. Section 3 
discusses the nature of the rrc landscape A(i) and the meaning of random 
spin systems in this context. The Mattis model and the Hopfield 
Hamiltonian serve as special examples where Eigen's error threshold 
relation is calculated. The dynamics in these landscapes is qualitatively 
discussed. Section 4 summarizes the results. 

2. S T A T I S T I C A L  M E C H A N I C S  OF T H E  E V O L U T I O N  E Q U A T I O N  

In the following, Eigen's evolution equation will be treated in a dis- 
crete version(6): 

y (n)=  Why(0) (2.1) 

The normalized concentration variables are given by 

y,(n) 
xi(n) = - -  

Zk  Yk(n) 

The elements of W are the same as in Eq. (1.2), but with A(i) denoting now 
the number of copies of sequence i produced within a given generation 
time. 

Equation (2.1) can be viewed as a path integral formulation for 
evolution. The distribution of macromolecules in the nth generation 
depends on all possible trajectories between the initial state y(0) and the 
final state y(n). Let {[st)} denote a complete orthonormal set of all 
possible sequences in the ith generation. For macromolecules of length l 
built up by 2 bases, there are 2 t possible states. With the initial condition 
y(0) = [s~ Eq. (2.1) can then be written as 

y (n)=  ~ ... ~ W[s" 1)(Sn--I[WIsn 2 ) . . . ( s I [ W [ s ~  (2.1') 
{ts ~ 15} {b,l) } 

The elements of the vector WIs ~ 1> give the number of all possible 
macromolecules in generation i that were produced by macromolecule 
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is ~ 1). Each evolutionary path can be characterized by a 2-dim spin con- 
figuration 22 with rows representing macromolecules at a certain time. 

In the following, only binary sequences are considered, which are 
characterized by Ising spin variables s~= _+1 denoting a purine or 
pyrimidine at site j of a macromolecule in generation i. With these 
variables the elements of W can be written in the form of Boltzmann 
weights~2): 

W ( i +  1, i ) = h ( q ) e x p [ l n A ( i ) ]  exp (flJy ~ s}+ 'sj) 
J 

(2.2) 

with fl= ] ln[(1-q) /q] l ,  arv= -+�89 for l~<q~<l and 0~<q~<�89 respectively, 
and the spin-configuration-independent function h(q)= [ q ( 1 - q ) ]  t/2. In 
this form W has the structure of a transfer matrix of an Ising system with 
nearest neighbor interaction in the y direction, which represents the time 
axis in the evolutionary process. The probability for a special realization Z 
of an evolutionary path is given by 

p ( Z )  = e-~H(~)/Z (2.3) 

with the fl-dependent cost function H(fi): 

= -  Jvs~i+ls~+ l nA( i ) - -~ -~ ln [q (1 - -q ) ]  (2.4) 
i = 0  i =  1 

The partition function Z is the sum over all possible trajectories 
weighted with e -~H(~). By treating the cost function H(fl)  as a Hamiltonian 
of an Ising system, all relevant equilibrium quantities have their counter- 
part in quantities characteristic for the evolution dynamics far from 
equilibrium. The central notions of the latter are selection, quasispecies, 
error threshold, growth rate, and relaxation times, (1) which correspond to 
equilibrium phase transition, surface magnetization, critical temperature, 
free energy per row, and correlation length as well as interfacial energy. In 
deriving these relations, let us go back to Eq. (2.1) and write its formal 
solution in terms of eigenvalues 2 i and eigenvectors ~i of the matrix W: 

y(n) = a l v i n ,  ~ -k a2~02,~ ~ q- - - -  

~ + (a2/a~)(2St l )"~2 + . . .  
x ( n )  = 

E k  q~lk + (a2/al)(22/21)"(P2k + "'" 

The growth rate is defined as the logarithm of the largest eigenvalue 21. 
The relaxation into the stationary state is determined by the ratio az/al, 
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which depends on the overlap of the initial state with ~1, as well as by the 
ratio of the largest to the second largest eigenvalue 42: 

g = In 2~ (2.5) 

17 1 = 1 n ( 2 1 / 2 2 )  (2.6) 

As long as W is an irreducible matrix, which is the case for 
macromolecules of finite length and replication numbers (rn) A(i)> 0, 21 is 
not degenerate and the relaxation time does not diverge. In the stationary 
state all maxima of A(i) are occupied according to their height and the 
height of their surroundings, r measures the relaxation time into this state, 
which can exceed any observation time. In practical experiments, however, 
one is interested in the fast relaxation into metastable states each of them 
characterized by its individual growth rate. In addition, there exists for 
reasonable models of A(i) a slow time scale for transitions between 
metastable states. 

The same situation occurs in the statistical mechanics of Ising systems. 
The elements of the (asymmetric) transfer matrix of a 2-dim square-lattice 
Ising system with Hamiltonian 

H~--n~l I ~ ] i+1  i E(i)-  Jys) s) 
i = 0  j = l  

are (7) 

T( i + 1, i) = exp[ -  flE( i) ] exp ( flJy ~ s'j + l s}) J (2.7) 

E(i) is the energy of spins within one row and/~ = 1/kT. The free energy per 
row in the limit n -*  ~ is determined by the largest eigenvalue 2~ r~ of T, 
which can become degenerate only in the thermodynamic limit for T~< T c. 
The correlation length in the y direction is given by the ratio of the two 
largest eigenvalues: 

- ~ f =  lim l l n  Z = l n  2~ r) (2.8) 

-I = In 2~r) 
2~r) (2.9) 

In a state with broken ergodicity the phase space is divided into several 
components where each component has its own free energy and correlation 
length. ~ corresponds therefore to the fast relaxation time around one 
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maximum of the rn landscape. For  finite l there is only one largest eigen- 
value 2~ r), which is asymptotically degenerate. The ratio of the largest two 
eigenvalues for a system with only two symmetric phases is of the order of 
the exponential of the interfacial energy ~nt,(81 

,~T~ 
In 2];-- 5 = O [exp( - f i / f i n t ) ]  (2.10) 

The relaxation time into a state where both maxima are equally populated 
is therefore determined by the probability of establishing an interface of 
energy/ f ,  nt. 

Breaking of ergodicity in the Ising system is related to the appearance 
o f  an order parameter below T~., which can be a homogeneous 
magnetization for easy-type interactions as in a ferromagnet or a function 
of local magnetizations such as the EA order parameter in spin glasses. (9) 
In dealing with the evolution equations one needs a criterion for selection, 
i.e., localization of macromolecules in a subregion of the /-dim con- 
figuration space. In order to get a macroscopic occupation of only a few 
sequences, the single-digit copying accuracy q must exceed a threshold 
value. (l) With the relation 

/3= l n ~  (2.11) 

the error threshold qC~ is determined by the critical temperature T c of the 
corresponding Ising system. Since macromolecules are information carriers, 
their sequence of nucleotides must not have a simple periodic arrangement. 
Hence, a local order parameter has to be used, which will be the local sur- 
face magnetization of the Ising system with one free boundary and no 
interactions within that row. Let us treat a matrix W that allows for the 
existence of metastable states of a lifetime longer than the observation time. 
Then the largest eigenvector ~1 of such a metastable state has components 
proportional to the occupation number of the sequences. Eigen's concept of 
the quasispecies (1) refers to this distribution of macromolecules: 

�9 1 1 
x(n) Zkq~lk-- Z ~ ... ~, WIs"-l) . . . (s l lWls~ ) fo r la rgen  

~l~" '>/ iis~>~ (2.12) 

Because of the equivalent structure of the elements of W and T and the 
asymmetric writing of T, where the interaction energy E(i) appears only in 
the lower row, a criterion for characterizing the width of the quasispecies is 
the local surface magnetization: 

(s}r ~, sTp(Z)=~sTxi(n) for large n (2.13) 
{Z} i 
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The index i stands for the spin configurations of the last row. The missing 
interaction to the spin row of the "future" and the absence of the rn in the 
last row (no interactions in the x direction) lead to a decrease of the sur- 
face magnetization relative to the bulk value. A decrease of the ordering 
temperature T~ ~ relative to Tc of the bulk is related to the question of "dead 
layers" at magnetic surfaces of Ising systems. ~176 For  simple short-range 
ferromagnetic interactions in the x direction it can be shown tl~ that dead 
layers cannot exist, i.e., ( s J )  vanishes at the same temperature as ( s j )  of 
the bulk. However, one can find a different behavior for other models, as in 
the case of a mean-field ferromagnetic interaction in the x direction ~1~ or a 
2-state Potts model, ~1~ where Tsf< T,.. It is T~ r that characterizes the onset 
of localization of the quasispecies in sequence space. 

The introduction of a cost function H(/~) in Eq. (2.4) for each 
evolutionary path also allows an alternate optimization strategy to find the 
quasispecies and the deterministic path leading to it from a given starting 
sequence. The optimization procedure used so far ~12) consists in producing 
mutants from the starting sequence and keeping those with higher 
replication number, while those with lower rn are killed with a certain 
probability. The sequences in this survival set are then the new starting 
sequences. The quasispecies is found when the sequence spectrum no longer 
changes. With the cost function H(fl), this step-by-step search is replaced 
by a strategy that already sees the whole time development from t = 0 to 
t = n. By fixing the spin row at i =  0 (starting sequence) and choosing n 
large enough, the quasispecies distribution is characterized by a local 
surface magnetization of the inhomogeneous 2-dim spin system under the 
condition of minimal free energy. To obtain the full (deterministic) time 
development of the macromolecular distribution between t = 0 and t = n, 
one needs n different spin systems. In each generation i the thermodynamic 
system consists of i rows, where only the last row determines the 
macromolecular distribution of that generation. 

3. RANDOM ISING SYSTEMS FOR EVOLUTION PROCESSES 

3.1. The Replication Number Landscape A(i) 

There is still insufficient knowledge about the nature of the rn 
landscape, especially how the interactions between the nucleotides deter- 
mine the A(i). Many of the experiments are done with the RNA of 
coliphages, with a chain length of 4000-5000 nucleotides, t13) The infor- 
mation about the kinetics that is relevant in our context is as follows: 

1. In vitro experiments show that for adapted sequences the rn of the 

822/48/i-2-23 
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plus strand is almost equal to that of the complementary minus 
strand. 

2. To a first approximation the rns of the macromolecules are 
independent of l within a wide range of length. 

3. The rns depend strongly on the secondary and tertiary structure of 
the macromolecules. Long-range interactions between the 
nucleotides appear because nucleotides that are far apart in the 
linear arrangement become close neighbors after the folding of the 
RNA. 

From site-directed mutagenesis experiments and studies of phylogenetic 
trees one gets additional information about the ruggedness and connec- 
tivity of the rn landscape(14): 

4. In general, sequences differing by only a small Hamming distance 
have similar functional fitness, here rns. 

5. There exist relatively unrelated sequences with the same functional 
destination and efficiency, i.e., the rn landscape must have several 
global maxima at unrelated configurations and there are ridges 
connecting them. 

6. The ratio of purines to pyrimidines in stable sequences is about 
1:1. 

To account for these points and the above-mentioned "random" 
arrangement of nucleotides, the concepts developed in the statistical 
mechanics of random Ising systems seem to be a good starting point to 
model the rn landscape. Here the term "random" is used in contrast to 
periodic, which would contain no information for RNA molecules. While a 
purely random sequence does not contain information either, an RNA 
molecule looks "random" to somebody unable to read the genetic code. 
The rn landscape will be modeled by a function consisting of long-range 
pair spin interactions only (points 3 and 4), which includes no interactions 
with a magnetic field (point 1), shows frustration (point 5), and has local 
maxima at sequences containing up and down spins in equal amounts 
(point 6). To account for point 2, one has to scale the coupling constants 
adequately. 

Anderson (15) used the extremely rugged free energy landscape of the 
SK spin-glass Hamiltonian (~6) in his model of prebiotic evolution. In our 
case another Hamiltonian seems to be better suited to model the rn 
landscape for actual experiments. This is Hopfield's Hamiltonian (17) applied 
to neural networks: 

E -  - 1_ Z J/+,s+s/, (3.1) 
2 j +~./, 
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with 

J~r 
J J J '=N L ~ } ~  (3.2) 

/~=1 

The p sets of {~}  are certain patterns learnt by the neural network, which 
consists of N spins sj. The ~}' are taken to be independent quenched 
variables with probability distribution 

1 1 
(3.3) 

The free energy landscape of (3.1), (3.2) was studied in detail by Amit et 
a/. t18"a9) In the limit ~ = p/N--.O for N--* oc there are 2p degenerate global 
minima fully correlated with the 2p patterns {~"} and { - ~ } .  In addition, 
one gets a number of local minima and saddle points growing exponen- 
tially with p. In this limit of low storage the global minima (Mattis states) 
do not disturb each other and show the same thermodynamic properties 
(correlation length, etc.) as a simple two-phase ferromagnet. By increasing 
the parameter c~, the free energy landscape at T = 0  becomes more and 
more similar to the SK spin glass. (19) 

In applying the Hopfield Hamiltonian to the rn landscape with the 
relation A(i)=e -E(i), one has more flexibility for its construction by 
varying the number of input configurations {~"}, which are now the 
mastersequences [-= sequences belonging to global maxima of A(i)]. In 
contrast to a pure spin-glass Hamiltonian, this landscape has fewer peaks 
and more extended flat areas and seems to fit better the experimental 
results. Iu) Note that the spin symmetric states { -  ~'} are the complemen- 
tary sequences, which usually do not encode proteins. 

3.2.  E r r o r  T h r e s h o l d  and  Q u a s i s p e c i e s  D i s t r i b u t i o n  f o r  a 
M a t t i s  M o d e l  

Before we continue to apply the Hopfield Hamiltonian to the 
evolution equation, let us discuss the main features, such as error threshold 
and relaxation times for the simplest case p = 1. The results gained from 
this case are directly applicable to the behavior of the dynamic system near 
the global maxima of the Hopfield rn landscape. For p =  1, Eqs. (3.1) and 
(3.2) model a landscape with two global maxima at configurations {r 
and {-~1}.  Since E is an extensive quantity, the maxima of the rns 
A(i)=e E(i) increase exponentially with the length l of the 
macromolecules, which is in contrast to experimental observations (point 
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2), The easiest way to get the proper behavior is by scaling the interaction 
constant Jx with 1/l: 

[ 1 J x  7 
A(i) = exp L5 (3.4) 

The difference in height between the maximum and the minimum of A(i) 
now has the fixed value (e Jx/2- 1). However, as the configuration space 
increases exponentially with l, the maxima become increasingly flatter, 
leading to longer relaxation times around them. There is no true phase 
transition with breaking of ergodicity in the sense that after infinitely many 
generations only one maximum of A(i) is populated. In the infinite time 
limit both maxima will be equally occupied. As to the question of selection, 
one is interested in whether the distribution of macromolecules around 
these maxima is localized or not. By focusing on only one maximum, the 
macromolecular spectrum can be characterized by an order parameter that 
vanishes at a critical copying accuracy qCr. Depending on the range of q, 
this value approaches 1 or 0 in the limit l ~  o% because then the spins 
decouple in the x direction, which leads to 1-dim spin chains with the 
critical temperature at T,. ~ 0. 

The cost function for the landscape (3.4) is, according to Eq. (2.4), 

- 1 l i i H ( / ~ ) = -  ~ J,.x~ + s ) + - ~  2 CJ~-J'S/Sr (3.5) 
i = 0  /=1  / ' = l j ' r  

Here the spin-independent part has been omitted, which would modify 
only the growth rate by an additional term In h(q). The interaction con- 
stant arv can be ferromagnetic or antiferromagnetic, depending on the range 
of q. In nature only the antiferromagnetic case is represented because of the 
complementary base-pairing principle. The order parameter then would 
have to be a local sublattice magnetization. Since we have assumed a spin 
symmetric rn landscape, the ferromagnetic and antiferromagnetic interac- 
tions lead to identical results for all of the thermodynamic quantities of 
interest. In case of the correlation function one has to consider each sublat- 
tice separately, in order to avoid the oscillations. For simplicity, we will 
therefore treat the case Jv = +�89 

To evaluate the partition function Z for the cost function (3.5), one 
can follow closely the steps used for the corresponding statistical mechanics 
system, where Jx/~l is replaced by j,.(2o) With the new Ising spin variables 
r/j = ~)sj the expression for Z is 

"Jx~ exp ~71 tl + flJy Z tl.}tl} + ' (3.6) Z e x p  

2 l  J a l l r /~=  + 1  i - -  j - -  j 
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Using the familiar Gauss identity 

exp = ~ f  co dxiexp --~+a'x'  (3.7) 

= U~ m,  one gets where a i=  [(Jx)l/2/l] Y~j tlj and with the substitution x ~ ~/2 
for (3.6) 

( \ Z=exp -- 2l j\2rcj f " f 2  dml"''dm" 

x exp 
1 ~ ~ ) -~12Jx ~ mi2+llnZ1 

i = 0  

with 

ZI = ~ exp [~ ([lJ~l~q~+ ~ + Jxm~l~)] (3.8) 
all ; ' / /= -I-1 

Zl is the partition function of a 1-dim Ising chain with row-dependent 
effective field Jxm i. For large but finite l ( l~  10~-104) one can use saddle- 
point method to evaluate the integral. For a homogeneous system one has 
m~= m Vi, which finally leads to the expression 

lim - l l n Z = - - l l z J ~ m 2 + l l n 2 1 ( m ) + O ( @ )  (3.9) 

21(m) is the largest eigenvalue of a 1-dim Ising chain in the effective field 
J~m: 

21(m)=er 2'Jy+e2'J~'sinh2jxm)X/2 (3.10) 

m is determined by taking the maximum of Eq. (3.9), which leads to the 
self-consistent equation 

e/~ sinh Jxm lm= (3.11) (e 2~Jy+ e2BJy q_ e2fl@ sinh 2 Jxm)l/2 

The local bulk magnetization ( s j )  is given by 

(sj)=~)lm (3.12) 

which shows that lm is the average overlap between ( s j )  and the random 
variable ~), which becomes 1 in the limit of exact replication, i.e., for 
fl-+ oo. In a first approximation the surface magnetization (2.13), which 
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characterizes the quasispecies, can be obtained by using a surface sheet 
model (~~ where the spins of the surface row are assumed to interact with 
the mean bulk spins (sj) .  With the cost function (3.5) this leads to 

(s] f) = t anh( f l Jy ( s j ) )  (3.13) 

Note that in this approximation ( s J )  vanishes at the same temperature as 
(s j) .  In an exact treatment of (sir),  however, it can be shown ~1) that T sf 
is smaller than Te, which is derived from (3.11), but shows the same 
characteristic relation between /max and 1-q~ Expanding Eq. (3.11) for 
small m and finite length l yields the critical line 

J~/l = e 2flcJY (3.14) 

Note that this is valid only in the limit Jx/l.~ 1, where the corrections in the 
saddle-point approximation can be neglected. In this limit the critical 
copying accuracy is always larger than 1/2, i.e., t ic>0. Below tic. the 
average overlap lm vanishes, which means an extended quasispecies distri- 
bution in sequence space. By using the relation (2.11) between tic and q~r 
the error threshold relation for the surface sheet model is 

/max = jxqCr/(1 _ qCr) (3.15) 

Macromolecules longer than /max will localize around { + ~1 }, thus being 
able to keep information only if the copying accuracy is larger than qCr. 
Equation (3.15) is in agreement with Eigen's error threshold, (~) which is 
derived by the requirement that in the stationary state the occupation of 
the mastersequence must be nonzero. This is equivalent to the statement 
that the production number of correct copies of the mastersequence must 
be higher than the average production number (including correct and 
incorrect copies) of all other molecules: (~'6/ 

A maXqt > ' ~ i #  max A(i) xi(n) 
~ , i  ~ max xi(n) 

For q close to 1 this leads to 

with 

l . . . .  =-In ~ / ( 1 - q  ~) 

fo r  r/----~ oo 

Here the superiority parameter a of the dominant species still contains the 
occupation numbers xi(n), which depend on A(i)  and qCr. In our model 

Amax  
= for n--* ~ (3.16) 

Si~max A(i)  xi(n)ffLi~m= x xi(n) 
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(3.4), where the mastersequence {i t} has the rn e J-`/2, the superiority 
parameter is e J'qc~ in the surface sheet approximation, which shows the 
dependence on the height of the rn landscape. An exact treatment of the 
boundary condition yields the value e J~/2 for a. (11) 

The biologically important relation between /max and 1 --qCr is charac- 
teristic for rn landscapes with length-independent height of the maxima. 
Evolutionary processes, however, must occur above qCr (below T<), for 
three reasons. First, a quasispecies distribution contains the master- 
sequence in macroscopic amounts of typically 4%. Then there would be 
neither selection of a quasispecies within observational times nor the slow 
evolutionary search for better adapted species, because of the critical 
slowing down (divergence of 4) and the vanishing of the interracial energy 
near T,.. To give an estimate for the time scales of the dynamics in a rn 
landscape where the two mastersequences differ in all positions, let us use 
the exact expressions for ~ and If ~nt of the topologically related Onsager 
model. (s) With interaction parameters J.,j~l and J,. = �89 one can express the 
ratio ~ ' s l ~  = efl(lint/~ in terms of the deviation Aft from tic: Tslow/Tfast  ,~ 

Z]fl exp(/zj/3). For macromolecules of length l ~  103 one gets unrealistic high 
values for this ratio if one tries to keep the quasispecies distribution 
narrow. This is due to the fact that l spins have to be flipped in a tran- 
sition from one maximum to the other. A landscape with local maxima at 
sequences differing in only a fraction of spin positions has lower interracial 
energies at error probabilities where the quasispecies is well localized. The 
expression zs~~ fast of the Onsager model with the total length l replaced 
by an effective length determined by the Hamming distance between two 
mastersequences could give a first estimate of the dynamic time scales for 
selection and evolution at an error probability that deviates from tic by Aft. 
Spin-glass Hamiltonians offer the possibility to generate the multitude of 
local maxima at sequences with nonvanishing overlap and thus allow 
transitions between metastable states within reasonable times. 

3.3. A(i) f r o m  H o p f i e l d ' s  M o d e l  f o r  Neura l  N e t w o r k s  

The steps used to treat the cost function (3.5) can be easily generalized 
to the more complicated landscape A(i) constructed from the Hopfield 
Hamiltonian (3.1), (3.2). The cost function is now 

H(/~)= - ~ J y 4 4  +1 + g - ~  ~ /4  + 5 - ~ P  n (3.17) 
i = 0  1 , u = l  j 1 

The number of mastersequences p is assumed to be so small that even for 
finite l the spin-glass solutions (19) can be neglected and only one order 
parameter, namely the macroscopic overlap with the sequences {~},  has 



356 Leuth~usser 

to be considered. Hence, one has to be well below p/l= 0.051, O9) where the 
Mattis states become the absolute maxima of the rn landscape. Instead of 
using the Gauss identity (3.7) for the single-indexed variable a ~, one now 
has double-indexed variables aUi= [(Jx)l/2/l] y~= l ~ s  j and m ui, where i 
specifies the row and /~ one of the p mastersequences. The partition 
function Z is then given by 

~vith 

Z : e x p ( - J x n p ) ( J x ~ P / 2  2 ~ dm ~i) 

x exp - 2 " i / =  l 

Z~ (Y) exp (flJ~,s~s~ +' + Jxm {JS/) (3.18) 
all  s i =  +1 

For homogeneous systems one can again argue that the p-component vec- 
tor m ~ is independent of i. In analogy to the treatment of the pure Hopfield 
Hamiltonian, one finds in the limit of large but finite I 

1 1 2 1 ~  
l lim l l n Z = - ~ l J x m  2. ln21(m~i) (3.19) 
- , , ~  oo n + 7  

/ - -  1 

with ,tl(mCj) given by Eq. (3.10). The m is determined by the saddle point 
equations #f/Sm"= O, which lead~ together with the self-averaging property 
of in Z, to the self-consistent equations 

e ~4' sinh J~m~ \ \  
lm = II ~ (e_2B4,-~ e2777si-~7~m~)l/2// (3.20) 

e € sinh Jxm{; 
( s j )  = (e 2~4+ e 2~4, sinh 2 J x m { j  1/2 (3.21) 

The average ((...}) in (3.20) is carried out with the distribution P ( { ~ } ) =  
[L  P(~'), with p ( ~ )  from Eq. (3.3), and replaces the sum (1//)Z;= 1. The 
discussion of the solutions of Eqs. (3.19) and (3.20) follows closely the steps 
for the pure Hopfield Hamiltonian. (~8) The additional ferromagnetic nearest 
neighbor interaction in the y direction increases the critical temperature, 
but does not change the nature and the stability behavior of the solutions. 
Let us start with the Mattis type of solution of Eq. (3.20), which one gets 
for the case m = m~(1, 0,..., 0). These states describe the stationary solutions 
of the evolution equation around one of the global maxima {~}  of the rn 
landscape. After averaging Eq. (3.20) with the distribution p(~) ,  one finds 
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the same self-consistent equation for ml as in the case of the Mattis model 
[Eq. (3.11)], which leads to the same error threshold relation (3.14), 
(3.15). After infinitely many replication steps (n ~ oe) all of the 2p Mattis 
states will be equally populated. 

The symmetric solutions of the Hopfield Hamiltonian (~a) belong to 
local maxima and ridges connecting local as well as global maxima of the 
rn landscape. In the evolutionary dynamics metastable localization around 
the local maxima will occur during the search for the global maxima. Since 
their height is lower than those of the Mattis states, (18) a more exact 
copying accuracy is needed to maintain a metastable state. With the same 
Ansatz m=mn(1 ,  1 ..... 1,0,..., 0) as used in the Hopfield model for these 
solutions, one gets identical expressions for the overlap Imn and the 
ordering of the growth rates near q = 1: gl > g3 > g5 > "'" g6 > g2. The 
even-n solutions remain unstable at all temperatures as in the pure Hop- 
field Hamiltonian. This can be seen from Eq. (3.20), where the sinh Jxm{ 
can take on the value zero, which means that a finite fraction of spins 
remains disordered, or, in the language of evolution dynamics, no 
metastable localization of a quasispecies is possible at mountain ridges. The 
odd-n solutions become metastable above copying accuracies qCr, which 
decrease with increasing height of the local maxima: q~r< q~r< q~r< .... 
During evolution the width of the quasispecies distribution would thus 
become increasingly narrow if the length l of the macromolecules and the 
copying accuracy q is kept fixed. If nature chooses the way of an invariant 
width of the quasispecies distribution, the macromolecules are able to 
increase their information content by increasing l. 

Because of the multitude of local maxima provided by the Hopfield rn 
landscape, the macroscopic evolution equations still contain a random 
element. While the relaxation around one local maximum is purely deter- 
ministic once macromolecules appear in its neighborhood, the search for 
the global maxima can proceed via many different paths where individual 
steps cannot be predicted with certainty. The evolutionary hopping, (1'22) 
i.e., the transition between metastable states, is always connected with the 
establishment of an interface between any two states. The characteristic 
transition time is determined by the probability to provide the extra energy 
of the interface: ~ ~ e ~~176 Between states with large mutual overlap ~nt  will 
be low, which makes transitions more likely than to states with little 
overlap. 

4. S U M M A R Y  A N D  O U T L O O K  

For Eigen's evolution model the connection between physics and 
biology was established. The macroscopic chemical rate equations, which 
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show a nonequilibrium phase transition, namely the selection of 
macromolecules, can be solved by treating an inhomogeneous Ising model 
with one fixed boundary row under thermal equilibrium conditions. A cost 
function H(/~) for every realization of an evolutionary path was derived 
[Eq. (2.4)]. With H(/~) as a Hamiltonian of statistical mechanics all 
relevant quantities of the dynamic system were expressed in terms of the 
Ising system [Eqs. (2.5)-(2.13)]. For the central input in the evolution 
equations, the replication number landscape, the experimental knowledge 
is still insufficient. This leads to a certain arbitrariness in the construction 
of A(i) and therefore only global features were tried to be modeled 
correctly. Of special importance is the free energy landscape of random 
Ising systems, where Hopfield's model for neural networks is one example. 
Because of the phenomenon of frustration, they provide the necessary mul- 
titude of local and global maxima in the rn landscape, which allows for the 
appearance of a large diversity of species and a complicated dynamics. 

The A(i) is constructed from the relation A(i) = e E(i). If E(i) had the 
property of an energy function, the rns would increase exponentially with 
the length I of the macromolecules. Since this is in contrast to experiments, 
which to a first approximation show length-independent rns, one has to 
scale the interaction constants with 1/l. It was shown that this rescaling is 
crucial for the reproduction of Eigen's error threshold, which restricts the 
maximally possible length of selected macromolecules to a finite value for 
copying accuracies smaller than one. For the case of localization around 
the global maxima of a Hopfield-type rn landscape the error threshold 
derived from the vanishing of the order parameter satisfies the relation 
Imax=jxqcr/( 1 _qCr). This corresponds to a superiority parameter o-= 
exp(JxqCr), which shows the dependence on the height of the rn maximum. 
It was argued that evolutionary dynamics must occur below this error 
threshold because of the critical slowing down near qCr, which makes selec- 
tion of a quasispecies impossible within observational times. In addition, 
no slow evolutionary search for better adapted species would be possible, 
because of the disappearance of the interracial energy. It was shown that 
one needs a rn landscape with local maxima at sequences differing in only a 
fraction of spin positions. Only then do the interracial energies become low 
enough to allow well-localized quasispecies and transitions between 
metastabte states within realistic times. The rn landscapes constructed from 
spin-glass Hamittonians, where Hopfield's Hamiltonian is one example, 
generate the necessary multitude of local maxima at sequences with non- 
vanishing overlap. They also bring a random element into the macroscopic 
evolution equations in the sense that many different paths lead to the stable 
stationary state of equal occupation of all global maxima. 

In this work several restrictions have been imposed on the evolution 
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dynamics. First, only binary sequences, i.e., Ising spin chains, have been 
treated instead of four-state Potts spin chains. Experiments show ~ that in 
the base-pairing mechanism copying errors of the type C - U  and G - A  
occur preferably. In addition, there are special sites in a sequence where 
copying errors do not matter  in the function of the encoded protein and 
therefore are more likely to occur than at other sites. These two facts 
make a site- and nucleotide-dependent copying accuracy necessary. The 
replication numbers of the plus and minus strands can differ substantially 
for sequences that are not well adapted, ~13) in contrast to sequences that 
belong to maxima of the rn landscape, where this difference is small, but 
observable. Adding a small uniform magnetic field in the cost function 
H ( f l )  does not substantially alter the rn of the mastersequences, which are 
composed of about  equal amounts of purines and pyrimidines, but leads to 
a big difference in rn for the plus and minus strands of the other inter- 
mediate sequences. Finally, the biologically most important  and efficient 
mutations consist of insertions and deletions of nucleotide clusters, which 
change the total length of the sequences. Within the statistical mechanics 
approach a row-dependent chemical potential would have to be introduced 
in addition to a specification of the mutat ion rate coefficients. 
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